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Abstract

A technique coupling with the parameter transformation method and the multiple scales method is presented for

determining the primary resonance response of strongly nonlinear Duffing–Rayleigh oscillator subject to random

narrowband excitation. By introducing a new expansion parameter a ¼ aðe; u0Þ, the multiple scales method is adapted to

determine the equations describing the modulation of response amplitude and phase. The effect of the random excitation

on the stable periodic response is analyzed as a perturbation. By the moment method steady-state mean square response is

obtained and its local stability is checked by Routh–Hurwitz criterion. Theoretical analyses and numerical calculations

show that when the intensity of random excitation increases, the steady-state solution may change from a limit cycle to a

diffused limit cycle. Under some conditions the system may have two steady-state solutions. The results obtained for

strongly nonlinear oscillator complement previous results in the literature for weakly nonlinear case.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The study on the response of stochastic nonlinear systems is of considerable important. Up to now there
have been a copious list of texts [1–3] and reference on random vibration of nonlinear system (see Refs. [5–10],
to mention a few). Some methods such as the equivalent linearization method [4], the quasic-static method [5],
the multiple scales method [6–8], the path integral method [9], and the stochastic averaging method [10] have
been used to investigate the weakly stochastic nonlinear system. It is realized that many problems of physical
interest are concerned with the motion of strongly nonlinear system (see, Refs. [11–13], to mention a few).
However, there is a smaller literature discussing strongly nonlinear system subject to random narrowband
excitation. This letter is to explore the strongly nonlinear Duffing–Rayleigh oscillator under random
narrowband excitation and the governing differential equation is

€uþ u� ed1 _uþ 1
3
ed2 _u3 þ ebu3 ¼ exðtÞ, (1)
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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where dots denote derivatives with respect to the time t, the positive parameter emay be ‘‘not small’’, d1; d2 are
damping coefficients , b denotes the intensity of nonlinear terms, and xðtÞ is an ergodic stochastic process with
zero mean governed by the following equation proposed by Wedig [14]:

xðtÞ ¼ p cosðOtþ gW ðtÞÞ, (2)

where W ðtÞ is a standard Wiener process, and the power spectrum density of xðtÞ is

SxðoÞ ¼
1

2

p2g2ðO2 þ o2 þ g4=4Þ

ðO2 � o2 þ g4=4Þ2 þ o2g4
.

For the extreme limiting case g! 0, the fluctuation spectrum SxðoÞ is vanishing over the entire frequency
range except at the singular frequency o ¼ �O, where Sxð�OÞ goes to infinity. This is a typical spectrum of
random narrowband noise. The aim of this letter is to investigate the behavior and stability of steady-state
response of system (1).

2. Analysis with the modified multiple scales method (MSM)

The modified MSM, suggested by Burton [16] while studying deterministic strongly nonlinear system, is a
valid perturbation method when the nonlinearity eb is not small compared with unity. This present letter is to
put forward his idea to investigate system (1). The first step is to introduce a new time variable t ¼ Ot, so that
Eq. (1) becomes

O2u00 þ u� eOd1u0 þ 1
3
eO3d2u0

3
þ ebu3 ¼ exðtÞ, (3)

where primes represent differentiation with respect to ‘‘time’’ t. This step accommodates the eventual
expansion of O2 in the inertia term. Now a steady-state response with the fundamental harmonic of amplitude
u0 when g ¼ 0 may be expected. Here u0 is used together with e to define a new expansion parameter
a ¼ eu2

0

�
ð4þ 3eu2

0Þ. In terms of a, the original parameter is replaced by

e ¼
1

u2
0

4a
1� 3a

� �
. (4)

The detuning parameter s, as a deviation from the so-called, reasonably accurate approximate backbone curve
illustrated in Ref. [16] in detail, is now introduced into O2 as

O2 ¼
1þ as
1� 3a

. (5)

Substituting Eqs. (2), (4) and (5) into Eq. (3) and non-dimensionalizing u by setting v ¼ u=u0, we have

ð1þ asÞv00 þ v� 2am1v
0 þ að2m2v0

3
þ 4bv3 � 3vÞ ¼

4p

u3
0

a cosðtþ gW ðtÞÞ, (6)

where the damping terms have been redefined as

m1 ¼
2d1O

u2
0

; m2 ¼
2d2O3

3
.

Obviously, the eventual steady-state fundamental harmonic of v must be of amplitude unity when g ¼ 0. Now
the usual steps in the standard multiple scales method may be applied to Eq. (6). Then a uniformly
approximate solution of Eq. (6) is sought in the form of power series

v ¼ v0ðT0;T1Þ þ av1ðT0;T1Þ þ � � � . (7)

Denoting D0 ¼ q=qT0;D1 ¼ q=qT1, the ordinary-time derivatives can be transformed into partial deriva-
tives as

d

dt
¼ D0 þ aD1 þ � � � ;

d2

dt2
¼ D2

0 þ 2aD0D1 þ � � � . (8)
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Substituting Eqs. (7) and (8) into Eq. (6) and comparing coefficients of a with equal powers leads to the
following differential equations:

D2
0v0 þ v0 ¼ 0, (9)

D2
0v1 þ v1 ¼ �sD2

0v0 � 2D0D1v0 þ 2m1D0v0 � 2m2ðD0v0Þ
3
� 4bv30 þ 3v0 þ

4p

u3
0

cosðtþ gW ðtÞÞ. (10)

The general solution of Eq. (9) can be written in the following form:

v0 ¼
1
2

aðT1Þ exp iðT0 þ jðT1ÞÞ þ cc, (11)

where cc denotes the complex conjugate of its preceding terms.
Applying Eq. (11) into Eq. (10) and eliminating the secular term, it is required that a and j vary in the slow

time scale according to

a0 ¼ m1a�
3

4
m2a3 �

2p

u3
0

sinðj� gW ðT1ÞÞ,

aj0 ¼ �
1

2
að3þ sÞ þ

3

2
ba3 �

2p

u3
0

cosðj� gW ðT1ÞÞ. (12)

After solving a and j, the first-order uniform expansion for the solution of Eq. (1) is given by

uðtÞ ¼ u0aðatÞ cosðtþ jðatÞÞ þOðaÞ.
3. Steady-state response and their stability

The response of Eq. (12) when g ¼ 0 is firstly considered. The steady-state solutions require in Eq. (12) that
a0 ¼ 0;j0 ¼ 0, a ¼ a0 ¼ 1 and this yields

m1 �
3

4
m2 ¼

2p

u3
0

sinj,

�
1

2
ð3þ sÞ þ

3

2
b ¼

2p

u3
0

cosj. ð13Þ

Eliminating j from Eq. (13) leads to the frequency response equation

m1 �
3

4
m2

� �2

þ
3

2
b�

1

2
ðsþ 3Þ

� �2
¼

4p2

u6
0

. (14)

The frequency response relation provides a one-parameter family of primary response curves. By denoting
r ¼ 1

4
u2
0, Figs. 1 and 2 present the amplitudes response curves for different values of the external excitation and

the unstable and stable domain in the r� s plane for the parameters e ¼ 1:0; d1 ¼ 1:0; d2 ¼ 0:5.
In the case of b ¼ 0, system (1) is reduced to a Rayleigh oscillator. When p ¼ 0, the curves of the family

degenerate into the point ð�3; 2Þ. As p increases, the curves first consist of two branches—a branch running
near the s-axis and a branch consisting of an approximate oval. As p increases, the approximate ovals expand
and the branches near the s-axis move away from this axis. When p reaches a critical value p1 ¼ 1:0897, the
two branches coalesce, and the resultant curve has a double point, as shown in Fig. 1. As p increases further,
the response curves become open curves, which continue to be multiple valued functions until p exceeds the
second critical value p2 ¼ 1:19. Beyond this critical value, the response curves are single valued function for all
values of s. For b ¼ 1:0, representative response curves with the same variety trend as that of the Rayleigh
oscillator are displayed in Fig. 2.

Not all of the solutions given by frequency relation are realizable and have a physical sense because some of
them are unstable. Through examining the stability of each fixed point by the usual way, one conclusion can
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Fig. 1. Frequency response curves and stable domain for the primary resonances of the Rayleigh oscillator.
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Fig. 2. Frequency response curves and stable domain for the primary resonances of the Duffing–Rayleigh oscillator.
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be drawn that when B140 and B240 the steady-state solutions are stable where B1 ¼ ð3=2Þm2 � m1 and

B2 ¼ ðm1 �
9
4
m2Þðm1 �

3
4
m2Þ þ

1
4
ðsþ 3Þ3 � 3bðsþ 3Þ þ 27

4
b2.

The thick lines (corresponding to the curves B1 ¼ 0 and B2 ¼ 0) in Figs. 1 and 2 separate the stable solutions
from the unstable ones: all solutions corresponding to points above the thick lines are stable and those below
the thick lines are unstable. The steady-state response and its stability when there is no noise for strongly
nonlinear system (1) are similar to the weakly nonlinear cases [9].

Next is to analyze the effect of the noise, i.e., ga0 on the deterministic steady-state motion. For this
purpose, letting Z ¼ j� gW ðtÞ, Eq. (12) can be rewritten as

a0 ¼ m1a�
3

4
m2a

3 �
2p

u3
0

sin Z,
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aZ0 ¼ �
1

2
að3þ sÞ þ

3

2
ba3 �

2p

u3
0

cos Z� agW 0ðT1Þ. (15)

Since it is difficult to obtain the exact analytical solution of Eq. (15), the perturbation method may be
employed to solve Eq. (15) when g is small. Let

a ¼ a0 þ a1; Z ¼ j0 þ Z1, (16)

where a0;j0 are given by Eq. (13) and a1; Z1 are perturbation terms. Inserting Eq. (16) into Eq. (15) and
neglecting nonlinear terms, we can obtain the following Itô equation

da1 ¼ ½ðm1 �
9
4
m2Þa1 � ð�

1
2
ðsþ 3Þ þ 3

2
bÞZ1�dT1,

dZ1 ¼ ½ð�
1
2
ðsþ 3Þ þ 9

2
bÞa1 þ ðm1 �

3
4
m2ÞZ1�dT1 � gdW ðT1Þ. (17)

Using the moment method [2], the steady-state moments are given by,

Ea1 ¼ EZ1 ¼ 0,

Ea2
1 ¼

� 1
2 ðsþ 3Þ þ 3

2 b
� �2g2

4 3
2 m2 � m1
� 	

m1 �
9
4 m2

� 	
m1 �

3
4 m2

� 	
þ 1

4 ðsþ 3Þ2 � 3bðsþ 3Þ þ 27
4 b

2
� � . (18)

Necessary and sufficient condition for stability of the second-order moments can be derived from
Routh–Hurwitz criterion [15]. The characteristic equation of the coefficients matrix of equations for the
second order moments Ea2

1; Ea1Z1 and EZ21 is

l3 þ A1l
2
þ A2lþ A3 ¼ 0, (19)

where

A1 ¼ 6ð3
2
m2 � m1Þ,

A2 ¼ 8ð3
2
m2 � m1Þ

2
þ 4ðm1 �

9
4
m2Þðm1 �

3
4
m2Þ þ ðsþ 3Þ3 � 12bðsþ 3Þ þ 27b2,

A3 ¼ 2ð3
2
m2 � m1Þ½4ðm1 �

9
4
m2Þðm1 �

3
4
m2Þ þ ðsþ 3Þ3 � 12bðsþ 3Þ þ 27b2�.

The second-order moments are asymptotically stable if all the eigenvalues of Eq. (19) have real parts negative.
Hence, if A140;A340 and A1A2 � A340 the second-order moments are stable which is in accord with the
condition B140 and B240.

Combining Eqs. (16) and (18), the mean square response of system (1) is

Ea2 ¼ u2
0 a2

0 þ
� 1

2
ðsþ 3Þ þ 3

2
b

� �2g2
4 3

2
m2 � m1

� 	
m1 �

9
4
m2

� 	
m1 �

3
4
m2

� 	
þ 1

4
ðsþ 3Þ2 � 3bðsþ 3Þ þ 27

4
b2

� �
 !

. (20)

4. Numerical simulation

For the method of numerical calculation, readers can refer to Zhu [2] and Shinozuka [16]. Eq. (1) is
integrated numerically by means of fourth Runge–Kutta algorithm. The random process xðtÞ governed by
Eq. (2) can be written as

xðtÞ ¼ p cosðjðtÞÞ; _jðtÞ ¼ Oþ gzðtÞ; zðtÞ ¼ _W ðtÞ,

where the formal derivative of unit Wiener process is a Gaussian white noise zðtÞ. It is more convenient to use
the pseudorandom signal given by [2] xðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4O=N

p PN
k¼1 cos½ðO=NÞð2k � 1Þtþ jk�, where j0ks are

independent and uniformly distributed in ð0; 2p�, N is a large positive integer.
The parameters are fixed as e ¼ 1:0; d2 ¼ 0:5; b ¼ 1:0; N ¼ 1000 in this section. When selecting p ¼ 1:25,

O ¼ 1:88; g ¼ 0:05 the time history of xðtÞ and its power spectrum density are shown in Fig. 3(a) and (b),
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Fig. 3. Time history and Power spectrum density of xðtÞ: (a) Time history of xðtÞ; (b) power spectrum density of xðtÞ.
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respectively. Fig. 4 depicts the variation of Eu2 versus s. Comparison of the theoretical result obtained by
solving Eq. (20) using Newton–Raphson method with the numerical one obtained by numerically integrating
Eq. (1) is shown in Fig. 4. One can observe that there are two or three steady-state responses theoretically for
some parameter region of s. However, only one or two can be realized in the numerical simulation, which is
identical with the condition B140 and B240 for the steady-state moments.

When the initial values are uð0Þ ¼ 0:4; u
:
ð0Þ ¼ �0:15, for d1 ¼ 1:0; p ¼ 1:25;O ¼ 1:88 and

g ¼ 0; 0:05; 0:1; 0:8, the numerical results of Eq. (1) are shown in Fig. 5. Fig. 5 shows that the random
noise gW ðtÞ will change the steady-state response from a limit cycle to a diffused limit cycle and the width of
the diffused limit cycle will increase as the intensity of the random excitation increases.

5. Conclusion and discussion

This letter investigated the primary resonance response of strongly nonlinear Duffing–Rayleigh oscillator.
The approximate periodic solution is derived by the multiple scales method coupling with the idea of
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parameter transformation. The mean square response is obtained by the moment method and the stability for
the steady-state solution is checked by Routh–Hurwitz criterion.

The results indicate that combination of the transformation parameter technique and the multiple scales
method is an effective approach to investigate the primary resonance response of single-degree-of-freedom
strongly nonlinear system under random narrowband excitation of the form €uþ uþ eau3 þ f ð _uÞ ¼ exðtÞ.
Further investigation has been devoted to extend the proposed method to multi-degree-of-freedom stochastic
strongly nonlinear system and the results will be presented soon.
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